Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

BUDD: Multi-modal Bayesian Updating Deforestation Detections (2001.10661v1)

Published 29 Jan 2020 in stat.AP and eess.IV

Abstract: The global phenomenon of forest degradation is a pressing issue with severe implications for climate stability and biodiversity protection. In this work we generate Bayesian updating deforestation detection (BUDD) algorithms by incorporating Sentinel-1 backscatter and interferometric coherence with Sentinel-2 normalized vegetation index data. We show that the algorithm provides good performance in validation AOIs. We compare the effectiveness of different combinations of the three data modalities as inputs into the BUDD algorithm and compare against existing benchmarks based on optical imagery.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube