Papers
Topics
Authors
Recent
2000 character limit reached

Tri-graph Information Propagation for Polypharmacy Side Effect Prediction

Published 28 Jan 2020 in cs.LG and stat.ML | (2001.10516v1)

Abstract: The use of drug combinations often leads to polypharmacy side effects (POSE). A recent method formulates POSE prediction as a link prediction problem on a graph of drugs and proteins, and solves it with Graph Convolutional Networks (GCNs). However, due to the complex relationships in POSE, this method has high computational cost and memory demand. This paper proposes a flexible Tri-graph Information Propagation (TIP) model that operates on three subgraphs to learn representations progressively by propagation from protein-protein graph to drug-drug graph via protein-drug graph. Experiments show that TIP improves accuracy by 7%+, time efficiency by 83$\times$, and space efficiency by 3$\times$.

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.