Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PGraphDTA: Improving Drug Target Interaction Prediction using Protein Language Models and Contact Maps (2310.04017v3)

Published 6 Oct 2023 in cs.LG and q-bio.QM

Abstract: Developing and discovering new drugs is a complex and resource-intensive endeavor that often involves substantial costs, time investment, and safety concerns. A key aspect of drug discovery involves identifying novel drug-target (DT) interactions. Existing computational methods for predicting DT interactions have primarily focused on binary classification tasks, aiming to determine whether a DT pair interacts or not. However, protein-ligand interactions exhibit a continuum of binding strengths, known as binding affinity, presenting a persistent challenge for accurate prediction. In this study, we investigate various techniques employed in Drug Target Interaction (DTI) prediction and propose novel enhancements to enhance their performance. Our approaches include the integration of Protein LLMs (PLMs) and the incorporation of Contact Map information as an inductive bias within current models. Through extensive experimentation, we demonstrate that our proposed approaches outperform the baseline models considered in this study, presenting a compelling case for further development in this direction. We anticipate that the insights gained from this work will significantly narrow the search space for potential drugs targeting specific proteins, thereby accelerating drug discovery. Code and data for PGraphDTA are available at https://github.com/Yijia-Xiao/PgraphDTA/.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Rakesh Bal (4 papers)
  2. Yijia Xiao (19 papers)
  3. Wei Wang (1793 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com