Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

An Ontology-Aware Framework for Audio Event Classification (2001.10048v1)

Published 27 Jan 2020 in cs.AI, cs.SD, and eess.AS

Abstract: Recent advancements in audio event classification often ignore the structure and relation between the label classes available as prior information. This structure can be defined by ontology and augmented in the classifier as a form of domain knowledge. To capture such dependencies between the labels, we propose an ontology-aware neural network containing two components: feed-forward ontology layers and graph convolutional networks (GCN). The feed-forward ontology layers capture the intra-dependencies of labels between different levels of ontology. On the other hand, GCN mainly models inter-dependency structure of labels within an ontology level. The framework is evaluated on two benchmark datasets for single-label and multi-label audio event classification tasks. The results demonstrate the proposed solutions efficacy to capture and explore the ontology relations and improve the classification performance.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.