Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Ontology-driven Event Type Classification in Images (2011.04714v1)

Published 9 Nov 2020 in cs.CV

Abstract: Event classification can add valuable information for semantic search and the increasingly important topic of fact validation in news. So far, only few approaches address image classification for newsworthy event types such as natural disasters, sports events, or elections. Previous work distinguishes only between a limited number of event types and relies on rather small datasets for training. In this paper, we present a novel ontology-driven approach for the classification of event types in images. We leverage a large number of real-world news events to pursue two objectives: First, we create an ontology based on Wikidata comprising the majority of event types. Second, we introduce a novel large-scale dataset that was acquired through Web crawling. Several baselines are proposed including an ontology-driven learning approach that aims to exploit structured information of a knowledge graph to learn relevant event relations using deep neural networks. Experimental results on existing as well as novel benchmark datasets demonstrate the superiority of the proposed ontology-driven approach.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.