Papers
Topics
Authors
Recent
2000 character limit reached

Ranking Significant Discrepancies in Clinical Reports

Published 18 Jan 2020 in cs.IR and cs.CL | (2001.06674v1)

Abstract: Medical errors are a major public health concern and a leading cause of death worldwide. Many healthcare centers and hospitals use reporting systems where medical practitioners write a preliminary medical report and the report is later reviewed, revised, and finalized by a more experienced physician. The revisions range from stylistic to corrections of critical errors or misinterpretations of the case. Due to the large quantity of reports written daily, it is often difficult to manually and thoroughly review all the finalized reports to find such errors and learn from them. To address this challenge, we propose a novel ranking approach, consisting of textual and ontological overlaps between the preliminary and final versions of reports. The approach learns to rank the reports based on the degree of discrepancy between the versions. This allows medical practitioners to easily identify and learn from the reports in which their interpretation most substantially differed from that of the attending physician (who finalized the report). This is a crucial step towards uncovering potential errors and helping medical practitioners to learn from such errors, thus improving patient-care in the long run. We evaluate our model on a dataset of radiology reports and show that our approach outperforms both previously-proposed approaches and more recent LLMs by 4.5% to 15.4%.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.