Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The problems with using STNs to align CNN feature maps (2001.05858v1)

Published 14 Jan 2020 in cs.CV and cs.LG

Abstract: Spatial transformer networks (STNs) were designed to enable CNNs to learn invariance to image transformations. STNs were originally proposed to transform CNN feature maps as well as input images. This enables the use of more complex features when predicting transformation parameters. However, since STNs perform a purely spatial transformation, they do not, in the general case, have the ability to align the feature maps of a transformed image and its original. We present a theoretical argument for this and investigate the practical implications, showing that this inability is coupled with decreased classification accuracy. We advocate taking advantage of more complex features in deeper layers by instead sharing parameters between the classification and the localisation network.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets