Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probabilistic Spatial Transformer Networks (2004.03637v2)

Published 7 Apr 2020 in cs.LG and stat.ML

Abstract: Spatial Transformer Networks (STNs) estimate image transformations that can improve downstream tasks by `zooming in' on relevant regions in an image. However, STNs are hard to train and sensitive to mis-predictions of transformations. To circumvent these limitations, we propose a probabilistic extension that estimates a stochastic transformation rather than a deterministic one. Marginalizing transformations allows us to consider each image at multiple poses, which makes the localization task easier and the training more robust. As an additional benefit, the stochastic transformations act as a localized, learned data augmentation that improves the downstream tasks. We show across standard imaging benchmarks and on a challenging real-world dataset that these two properties lead to improved classification performance, robustness and model calibration. We further demonstrate that the approach generalizes to non-visual domains by improving model performance on time-series data.

Citations (6)

Summary

We haven't generated a summary for this paper yet.