Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Cross-dataset Training for Class Increasing Object Detection (2001.04621v1)

Published 14 Jan 2020 in cs.CV

Abstract: We present a conceptually simple, flexible and general framework for cross-dataset training in object detection. Given two or more already labeled datasets that target for different object classes, cross-dataset training aims to detect the union of the different classes, so that we do not have to label all the classes for all the datasets. By cross-dataset training, existing datasets can be utilized to detect the merged object classes with a single model. Further more, in industrial applications, the object classes usually increase on demand. So when adding new classes, it is quite time-consuming if we label the new classes on all the existing datasets. While using cross-dataset training, we only need to label the new classes on the new dataset. We experiment on PASCAL VOC, COCO, WIDER FACE and WIDER Pedestrian with both solo and cross-dataset settings. Results show that our cross-dataset pipeline can achieve similar impressive performance simultaneously on these datasets compared with training independently.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.