Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gaussian speaker embedding learning for text-independent speaker verification (2001.04585v1)

Published 14 Jan 2020 in eess.AS, cs.SD, and eess.SP

Abstract: The x-vector maps segments of arbitrary duration to vectors of fixed dimension using deep neural network. Combined with the probabilistic linear discriminant analysis (PLDA) backend, the x-vector/PLDA has become the dominant framework in text-independent speaker verification. Nevertheless, how to extract the x-vector appropriate for the PLDA backend is a key problem. In this paper, we propose a Gaussian noise constrained network (GNCN) to extract xvector, which adopts a multi-task learning strategy with the primary task classifying the speakers and the auxiliary task just fitting the Gaussian noises. Experiments are carried out using the SITW database. The results demonstrate the effectiveness of our proposed method

Citations (1)

Summary

We haven't generated a summary for this paper yet.