Papers
Topics
Authors
Recent
2000 character limit reached

Gaussian speaker embedding learning for text-independent speaker verification

Published 14 Jan 2020 in eess.AS, cs.SD, and eess.SP | (2001.04585v1)

Abstract: The x-vector maps segments of arbitrary duration to vectors of fixed dimension using deep neural network. Combined with the probabilistic linear discriminant analysis (PLDA) backend, the x-vector/PLDA has become the dominant framework in text-independent speaker verification. Nevertheless, how to extract the x-vector appropriate for the PLDA backend is a key problem. In this paper, we propose a Gaussian noise constrained network (GNCN) to extract xvector, which adopts a multi-task learning strategy with the primary task classifying the speakers and the auxiliary task just fitting the Gaussian noises. Experiments are carried out using the SITW database. The results demonstrate the effectiveness of our proposed method

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.