Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural PLDA Modeling for End-to-End Speaker Verification (2008.04527v1)

Published 11 Aug 2020 in eess.AS, cs.CL, cs.LG, and cs.SD

Abstract: While deep learning models have made significant advances in supervised classification problems, the application of these models for out-of-set verification tasks like speaker recognition has been limited to deriving feature embeddings. The state-of-the-art x-vector PLDA based speaker verification systems use a generative model based on probabilistic linear discriminant analysis (PLDA) for computing the verification score. Recently, we had proposed a neural network approach for backend modeling in speaker verification called the neural PLDA (NPLDA) where the likelihood ratio score of the generative PLDA model is posed as a discriminative similarity function and the learnable parameters of the score function are optimized using a verification cost. In this paper, we extend this work to achieve joint optimization of the embedding neural network (x-vector network) with the NPLDA network in an end-to-end (E2E) fashion. This proposed end-to-end model is optimized directly from the acoustic features with a verification cost function and during testing, the model directly outputs the likelihood ratio score. With various experiments using the NIST speaker recognition evaluation (SRE) 2018 and 2019 datasets, we show that the proposed E2E model improves significantly over the x-vector PLDA baseline speaker verification system.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Shreyas Ramoji (8 papers)
  2. Prashant Krishnan (9 papers)
  3. Sriram Ganapathy (72 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.