Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
21 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
459 tokens/sec
Kimi K2 via Groq Premium
230 tokens/sec
2000 character limit reached

Unsupervised Audiovisual Synthesis via Exemplar Autoencoders (2001.04463v3)

Published 13 Jan 2020 in cs.CV, cs.LG, cs.MM, cs.SD, and eess.AS

Abstract: We present an unsupervised approach that converts the input speech of any individual into audiovisual streams of potentially-infinitely many output speakers. Our approach builds on simple autoencoders that project out-of-sample data onto the distribution of the training set. We use Exemplar Autoencoders to learn the voice, stylistic prosody, and visual appearance of a specific target exemplar speech. In contrast to existing methods, the proposed approach can be easily extended to an arbitrarily large number of speakers and styles using only 3 minutes of target audio-video data, without requiring {\em any} training data for the input speaker. To do so, we learn audiovisual bottleneck representations that capture the structured linguistic content of speech. We outperform prior approaches on both audio and video synthesis, and provide extensive qualitative analysis on our project page -- https://www.cs.cmu.edu/~exemplar-ae/.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.