Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Parallel Sparse Tensor Benchmark Suite on CPUs and GPUs (2001.00660v1)

Published 2 Jan 2020 in cs.DC and cs.PF

Abstract: Tensor computations present significant performance challenges that impact a wide spectrum of applications ranging from machine learning, healthcare analytics, social network analysis, data mining to quantum chemistry and signal processing. Efforts to improve the performance of tensor computations include exploring data layout, execution scheduling, and parallelism in common tensor kernels. This work presents a benchmark suite for arbitrary-order sparse tensor kernels using state-of-the-art tensor formats: coordinate (COO) and hierarchical coordinate (HiCOO) on CPUs and GPUs. It presents a set of reference tensor kernel implementations that are compatible with real-world tensors and power law tensors extended from synthetic graph generation techniques. We also propose Roofline performance models for these kernels to provide insights of computer platforms from sparse tensor view.

Citations (3)

Summary

We haven't generated a summary for this paper yet.