Papers
Topics
Authors
Recent
2000 character limit reached

EEG based Continuous Speech Recognition using Transformers

Published 31 Dec 2019 in eess.AS, cs.LG, cs.SD, and stat.ML | (2001.00501v3)

Abstract: In this paper we investigate continuous speech recognition using electroencephalography (EEG) features using recently introduced end-to-end transformer based automatic speech recognition (ASR) model. Our results demonstrate that transformer based model demonstrate faster training compared to recurrent neural network (RNN) based sequence-to-sequence EEG models and better performance during inference time for smaller test set vocabulary but as we increase the vocabulary size, the performance of the RNN based models were better than transformer based model on a limited English vocabulary.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.