Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attention-based ASR with Lightweight and Dynamic Convolutions (1912.11793v2)

Published 26 Dec 2019 in eess.AS

Abstract: End-to-end (E2E) automatic speech recognition (ASR) with sequence-to-sequence models has gained attention because of its simple model training compared with conventional hidden Markov model based ASR. Recently, several studies report the state-of-the-art E2E ASR results obtained by Transformer. Compared to recurrent neural network (RNN) based E2E models, training of Transformer is more efficient and also achieves better performance on various tasks. However, self-attention used in Transformer requires computation quadratic in its input length. In this paper, we propose to apply lightweight and dynamic convolution to E2E ASR as an alternative architecture to the self-attention to make the computational order linear. We also propose joint training with connectionist temporal classification, convolution on the frequency axis, and combination with self-attention. With these techniques, the proposed architectures achieve better performance than RNN-based E2E model and performance competitive to state-of-the-art Transformer on various ASR benchmarks including noisy/reverberant tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yuya Fujita (16 papers)
  2. Aswin Shanmugam Subramanian (20 papers)
  3. Motoi Omachi (5 papers)
  4. Shinji Watanabe (416 papers)
Citations (14)