Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Surface HOF: Surface Reconstruction from a Single Image Using Higher Order Function Networks (1912.08852v1)

Published 18 Dec 2019 in cs.CV

Abstract: We address the problem of generating a high-resolution surface reconstruction from a single image. Our approach is to learn a Higher Order Function (HOF) which takes an image of an object as input and generates a mapping function. The mapping function takes samples from a canonical domain (e.g. the unit sphere) and maps each sample to a local tangent plane on the 3D reconstruction of the object. Each tangent plane is represented as an origin point and a normal vector at that point. By efficiently learning a continuous mapping function, the surface can be generated at arbitrary resolution in contrast to other methods which generate fixed resolution outputs. We present the Surface HOF in which both the higher order function and the mapping function are represented as neural networks, and train the networks to generate reconstructions of PointNet objects. Experiments show that Surface HOF is more accurate and uses more efficient representations than other state of the art methods for surface reconstruction. Surface HOF is also easier to train: it requires minimal input pre-processing and output post-processing and generates surface representations that are more parameter efficient. Its accuracy and convenience make Surface HOF an appealing method for single image reconstruction.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.