Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Super-resolution 3D Human Shape from a Single Low-Resolution Image (2208.10738v1)

Published 23 Aug 2022 in cs.CV

Abstract: We propose a novel framework to reconstruct super-resolution human shape from a single low-resolution input image. The approach overcomes limitations of existing approaches that reconstruct 3D human shape from a single image, which require high-resolution images together with auxiliary data such as surface normal or a parametric model to reconstruct high-detail shape. The proposed framework represents the reconstructed shape with a high-detail implicit function. Analogous to the objective of 2D image super-resolution, the approach learns the mapping from a low-resolution shape to its high-resolution counterpart and it is applied to reconstruct 3D shape detail from low-resolution images. The approach is trained end-to-end employing a novel loss function which estimates the information lost between a low and high-resolution representation of the same 3D surface shape. Evaluation for single image reconstruction of clothed people demonstrates that our method achieves high-detail surface reconstruction from low-resolution images without auxiliary data. Extensive experiments show that the proposed approach can estimate super-resolution human geometries with a significantly higher level of detail than that obtained with previous approaches when applied to low-resolution images.

Citations (8)

Summary

We haven't generated a summary for this paper yet.