Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Outage Detection in Partially Observable Distribution Systems using Smart Meters and Generative Adversarial Networks (1912.04992v1)

Published 10 Dec 2019 in eess.SY, cs.SY, and eess.SP

Abstract: In this paper, we present a novel data-driven approach to detect outage events in partially observable distribution systems by capturing the changes in smart meters' (SMs) data distribution. To achieve this, first, a breadth-first search (BFS)-based mechanism is proposed to decompose the network into a set of zones that maximize outage location information in partially observable systems. Then, using SM data in each zone, a generative adversarial network (GAN) is designed to implicitly extract the temporal-spatial behavior in normal conditions in an unsupervised fashion. After training, an anomaly scoring technique is leveraged to determine if real-time measurements indicate an outage event in the zone. Finally, to infer the location of the outage events in a multi-zone network, a zone coordination process is proposed to take into account the interdependencies of intersecting zones. We have provided analytical guarantees of performance for our algorithm using the concept of entropy, which is leveraged to quantify outage location information in multi-zone grids. The proposed method has been tested and verified on distribution feeder models with real SM data.

Citations (29)

Summary

We haven't generated a summary for this paper yet.