2000 character limit reached
Deep Autoencoders with Value-at-Risk Thresholding for Unsupervised Anomaly Detection (1912.04418v1)
Published 9 Dec 2019 in cs.CV, cs.LG, and eess.IV
Abstract: Many real-world monitoring and surveillance applications require non-trivial anomaly detection to be run in the streaming model. We consider an incremental-learning approach, wherein a deep-autoencoding (DAE) model of what is normal is trained and used to detect anomalies at the same time. In the detection of anomalies, we utilise a novel thresholding mechanism, based on value at risk (VaR). We compare the resulting convolutional neural network (CNN) against a number of subspace methods, and present results on changedetection net.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.