Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Numerical semigroups, polyhedra, and posets I: the group cone (1912.03741v4)

Published 8 Dec 2019 in math.CO

Abstract: Several papers have explored families of rational polyhedra whose integer points are in bijection with certain families of numerical semigroups. One such family, first introduced by Kunz, has integer points in bijection with numerical semigroups of fixed multiplicity, and another, introduced by Hellus and Waldi, has integer points corresponding to oversemigroups of numerical semigroups with two generators. In this paper, we provide a combinatorial framework from which to study both families of polyhedra. We introduce a new family of polyhedra called group cones, each constructed from some finite abelian group, from which both of the aforementioned families of polyhedra are directly determined but that are more natural to study from a standpoint of polyhedral geometry. We prove that the faces of group cones are naturally indexed by a family of finite posets, and illustrate how this combinatorial data relates to semigroups living in the corresponding faces of the other two families of polyhedra.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.