On faces of the Kunz cone and the numerical semigroups within them (2309.07793v1)
Abstract: A numerical semigroup is a cofinite subset of the non-negative integers that is closed under addition and contains 0. Each numerical semigroup $S$ with fixed smallest positive element $m$ corresponds to an integer point in a rational polyhedral cone $\mathcal C_m$, called the Kunz cone. Moreover, numerical semigroups corresponding to points in the same face $F \subseteq \mathcal C_m$ are known to share many properties, such as the number of minimal generators. In this work, we classify which faces of $\mathcal C_m$ contain points corresponding to numerical semigroups. Additionally, we obtain sharp bounds on the number of minimal generators of $S$ in terms of the dimension of the face of $\mathcal C_m$ containing the point corresponding to $S$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.