Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Label Refinement with an Iterative Generative Adversarial Network for Boosting Retinal Vessel Segmentation (1912.02589v1)

Published 5 Dec 2019 in eess.IV

Abstract: State-of-the-art methods for retinal vessel segmentation mainly rely on manually labeled vessels as the ground truth for supervised training. The quality of manual labels plays an essential role in the segmentation accuracy, while in practice it could vary a lot and in turn could substantially mislead the training process and limit the segmentation accuracy. This paper aims to "purify" any comprehensive training set, which consists of data annotated by various observers, via refining low-quality manual labels in the dataset. To this end, we have developed a novel label refinement method based on an iterative generative adversarial network (GAN). Our iterative GAN is trained based on a set of high-quality patches (i.e. with consistent manual labels among different observers) and low-quality patches with noisy manual vessel labels. A simple yet effective method has been designed to simulate low-quality patches with noises which conform to the distribution of real noises from human observers. To evaluate the effectiveness of our method, we have trained four state-of-the-art retinal vessel segmentation models using the purified dataset obtained from our method and compared their performance with those trained based on the original noisy datasets. Experimental results on two datasets DRIVE and CHASE_DB1 demonstrate that obvious accuracy improvements can be achieved for all the four models when using the purified datasets from our method.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.