Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Two Stage GAN for High Resolution Retinal Image Generation and Segmentation (1907.12296v1)

Published 29 Jul 2019 in eess.IV and cs.CV

Abstract: In recent years, the use of deep learning is becoming increasingly popular in computer vision. However, the effective training of deep architectures usually relies on huge sets of annotated data. This is critical in the medical field where it is difficult and expensive to obtain annotated images. In this paper, we use Generative Adversarial Networks (GANs) for synthesizing high quality retinal images, along with the corresponding semantic label-maps, to be used instead of real images during the training process. Differently from other previous proposals, we suggest a two step approach: first, a progressively growing GAN is trained to generate the semantic label-maps, which describe the blood vessel structure (i.e. vasculature); second, an image-to-image translation approach is used to obtain realistic retinal images from the generated vasculature. By using only a handful of training samples, our approach generates realistic high resolution images, that can be effectively used to enlarge small available datasets. Comparable results have been obtained employing the generated images in place of real data during training. The practical viability of the proposed approach has been demonstrated by applying it on two well established benchmark sets for retinal vessel segmentation, both containing a very small number of training samples. Our method obtained better performances with respect to state-of-the-art techniques.

Citations (41)

Summary

We haven't generated a summary for this paper yet.