Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Action Recognition via Pose-Based Graph Convolutional Networks with Intermediate Dense Supervision (1911.12509v1)

Published 28 Nov 2019 in cs.CV

Abstract: Pose-based action recognition has drawn considerable attention recently. Existing methods exploit the joint positions to extract the body-part features from the activation map of the convolutional networks to assist human action recognition. However, these features are simply concatenated or max-pooled in previous works. The structured correlations among the body parts, which are essential for understanding complex human actions, are not fully exploited. To address the problem, we propose a pose-based graph convolutional network (PGCN), which encodes the body-part features into a human-based spatiotemporal graph, and explicitly models their correlations with a novel light-weight adaptive graph convolutional module to produce a highly discriminative representation for human action recognition. Besides, we discover that the backbone network tends to identify patterns from the most discriminative areas of the input regardless of the others. Thus the features pooled by the joint positions from other areas are less informative, which consequently hampers the performance of the followed aggregation process for recognizing actions. To alleviate this issue, we introduce a simple intermediate dense supervision mechanism for the backbone network, which adequately addresses the problem with no extra computation cost during inference. We evaluate the proposed approach on three popular benchmarks for pose-based action recognition tasks, i.e., Sub-JHMDB, PennAction and NTU-RGBD, where our approach significantly outperforms state-of-the-arts without the bells and whistles.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.