Papers
Topics
Authors
Recent
Search
2000 character limit reached

Pose-Guided Graph Convolutional Networks for Skeleton-Based Action Recognition

Published 10 Oct 2022 in cs.CV, eess.IV, and eess.SP | (2210.06192v1)

Abstract: Graph convolutional networks (GCNs), which can model the human body skeletons as spatial and temporal graphs, have shown remarkable potential in skeleton-based action recognition. However, in the existing GCN-based methods, graph-structured representation of the human skeleton makes it difficult to be fused with other modalities, especially in the early stages. This may limit their scalability and performance in action recognition tasks. In addition, the pose information, which naturally contains informative and discriminative clues for action recognition, is rarely explored together with skeleton data in existing methods. In this work, we propose pose-guided GCN (PG-GCN), a multi-modal framework for high-performance human action recognition. In particular, a multi-stream network is constructed to simultaneously explore the robust features from both the pose and skeleton data, while a dynamic attention module is designed for early-stage feature fusion. The core idea of this module is to utilize a trainable graph to aggregate features from the skeleton stream with that of the pose stream, which leads to a network with more robust feature representation ability. Extensive experiments show that the proposed PG-GCN can achieve state-of-the-art performance on the NTU RGB+D 60 and NTU RGB+D 120 datasets.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.