Limitations of Clustering Using Quantum Persistent Homology (1911.10781v1)
Abstract: Different algorithms can be used for clustering purposes with data sets. On of these algorithms, uses topological features extracted from the data set to base the clusters on. The complexity of this algorithm is however exponential in the number of data points. Recently a quantum algorithm was proposed by Lloyd Garnerone and Zanardi with claimed polynomial complexity, hence an exponential improved over classical algorithms. However, we show that this algorithm in general cannot be used to compute these topological features in any dimension but the zeroth. We also give pointers on how to still use the algorithm for clustering purposes.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.