Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 36 tok/s Pro
Gemini 2.5 Flash 133 tok/s Pro
Kimi K2 216 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Causal inference with recurrent data via inverse probability treatment weighting method (IPTW) (1911.06868v1)

Published 15 Nov 2019 in stat.ME

Abstract: Propensity score methods are increasingly being used to reduce estimation bias of treatment effects for observational studies. Previous research has shown that propensity score methods consistently estimate the marginal hazard ratio for time to event data. However, recurrent data frequently arise in the biomedical literature and there is a paucity of research into the use of propensity score methods when data are recurrent in nature. The objective of this paper is to extend the existing propensity score methods to recurrent data setting. We illustrate our methods through a series of Monte Carlo simulations. The simulation results indicate that without the presence of censoring, the IPTW estimators allow us to consistently estimate the marginal hazard ratio for each event. Under administrative censoring regime, the stabilized IPTW estimator yields biased estimate of the marginal hazard ratio, and the degree of bias depends on the proportion of subjects being censored. For variance estimation, the na\"ive variance estimator often tends to substantially underestimate the variance of the IPTW estimator, while the robust variance estimator significantly reduces the estimation bias of the variance.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.