Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Cardinal invariants and convergence properties of locally minimal groups (1911.04296v1)

Published 11 Nov 2019 in math.GN and math.GR

Abstract: If G is a locally essential subgroup of a compact abelian group K, then: (i) t(G)=w(G)=w(K), where t(G) is the tightness of G; (ii) if G is radial, then K must be metrizable; (iii) G contains a super-sequence S converging to 0 such that |S|=w(G)=w(K). Items (i)--(iii) hold when G is a dense locally minimal subgroup of K. We show that locally minimal, locally precompact abelian groups of countable tightness are metrizable. In particular, a minimal abelian group of countable tightness is metrizable. This answers a question of O. Okunev posed in 2007. For every uncountable cardinal kappa, we construct a Frechet-Urysohn minimal group G of character kappa such that the connected component of G is an open normal omega-bounded subgroup (thus, G is locally precompact). We also build a minimal nilpotent group of nilpotency class 2 without non-trivial convergent sequences having an open normal countably compact subgroup.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.