Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A dichotomy property for locally compact groups (1704.03438v2)

Published 11 Apr 2017 in math.GN

Abstract: We extend to metrizable locally compact groups Rosenthal's theorem describing those Banach spaces containing no copy of $l_1$. For that purpose, we transfer to general locally compact groups the notion of interpolation ($I_0$) set, which was defined by Hartman and Ryll-Nardzewsky [25] for locally compact abelian groups. Thus we prove that for every sequence $\lbrace g_n \rbrace_{n<\omega}$ in a locally compact group $G$, then either $\lbrace g_n \rbrace_{n<\omega}$ has a weak Cauchy subsequence or contains a subsequence that is an $I_0$ set. This result is subsequently applied to obtain sufficient conditions for the existence of Sidon sets in a locally compact group $G$, an old question that remains open since 1974 (see [32] and [20]). Finally, we show that every locally compact group strongly respects compactness extending thereby a result by Comfort, Trigos-Arrieta, and Wu [13], who established this property for abelian locally compact groups.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.