Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Cross-validated covariance estimators for high-dimensional minimum-variance portfolios (1910.13960v5)

Published 30 Oct 2019 in q-fin.PM and stat.ME

Abstract: The global minimum-variance portfolio is a typical choice for investors because of its simplicity and broad applicability. Although it requires only one input, namely the covariance matrix of asset returns, estimating the optimal solution remains a challenge. In the presence of high-dimensionality in the data, the sample covariance estimator becomes ill-conditioned and leads to suboptimal portfolios out-of-sample. To address this issue, we review recently proposed efficient estimation methods for the covariance matrix and extend the literature by suggesting a multi-fold cross-validation technique for selecting the necessary tuning parameters within each method. Conducting an extensive empirical analysis with four datasets based on the S&P 500, we show that the data-driven choice of specific tuning parameters with the proposed cross-validation improves the out-of-sample performance of the global minimum-variance portfolio. In addition, we identify estimators that are strongly influenced by the choice of the tuning parameter and detect a clear relationship between the selection criterion within the cross-validation and the evaluated performance measure.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.