Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

High-dimensional covariance matrix estimators on simulated portfolios with complex structures (2412.08756v1)

Published 11 Dec 2024 in q-fin.CP and physics.soc-ph

Abstract: We study the allocation of synthetic portfolios under hierarchical nested, one-factor, and diagonal structures of the population covariance matrix in a high-dimensional scenario. The noise reduction approaches for the sample realizations are based on random matrices, free probability, deterministic equivalents, and their combination with a data science hierarchical method known as two-step covariance estimators. The financial performance metrics from the simulations are compared with empirical data from companies comprising the S&P 500 index using a moving window and walk-forward analysis. The portfolio allocation strategies analyzed include the minimum variance portfolio (both with and without short-selling constraints) and the hierarchical risk parity approach. Our proposed hierarchical nested covariance model shows signatures of complex system interactions. The empirical financial data reproduces stylized portfolio facts observed in the complex and one-factor covariance models. The two-step estimators proposed here improve several financial metrics under the analyzed investment strategies. The results pave the way for new risk management and diversification approaches when the number of assets is of the same order as the number of transaction days in the investment portfolio.

Summary

We haven't generated a summary for this paper yet.