Papers
Topics
Authors
Recent
2000 character limit reached

Unsupervised Boosting-based Autoencoder Ensembles for Outlier Detection

Published 22 Oct 2019 in cs.LG and stat.ML | (1910.09754v1)

Abstract: Autoencoders, as a dimensionality reduction technique, have been recently applied to outlier detection. However, neural networks are known to be vulnerable to overfitting, and therefore have limited potential in the unsupervised outlier detection setting. Current approaches to ensemble-based autoencoders do not generate a sufficient level of diversity to avoid the overfitting issue. To overcome the aforementioned limitations we develop a Boosting-based Autoencoder Ensemble approach (in short, BAE). BAE is an unsupervised ensemble method that, similarly to the boosting approach, builds an adaptive cascade of autoencoders to achieve improved and robust results. BAE trains the autoencoder components sequentially by performing a weighted sampling of the data, aimed at reducing the amount of outliers used during training, and at injecting diversity in the ensemble. We perform extensive experiments and show that the proposed methodology outperforms state-of-the-art approaches under a variety of conditions.

Citations (17)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.