Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AEGR: A simple approach to gradient reversal in autoencoders for network anomaly detection (1912.13387v2)

Published 21 Dec 2019 in cs.LG and stat.ML

Abstract: Anomaly detection is referred to as a process in which the aim is to detect data points that follow a different pattern from the majority of data points. Anomaly detection methods suffer from several well-known challenges that hinder their performance such as high dimensionality. Autoencoders are unsupervised neural networks that have been used for the purpose of reducing dimensionality and also detecting network anomalies in large datasets. The performance of autoencoders debilitates when the training set contains noise and anomalies. In this paper, a new gradient-reversal method is proposed to overcome the influence of anomalies on the training phase for the purpose of detecting network anomalies. The method is different from other approaches as it does not require an anomaly-free training set and is based on reconstruction error. Once latent variables are extracted from the network, Local Outlier Factor is used to separate normal data points from anomalies. A simple pruning approach and data augmentation is also added to further improve performance. The experimental results show that the proposed model can outperform other well-know approaches.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Kasra Babaei (3 papers)
  2. Zhi Yuan Chen (1 paper)
  3. Tomas Maul (4 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.