Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Differentially Private Survival Function Estimation (1910.05108v2)

Published 4 Oct 2019 in cs.LG, stat.ME, and stat.ML

Abstract: Survival function estimation is used in many disciplines, but it is most common in medical analytics in the form of the Kaplan-Meier estimator. Sensitive data (patient records) is used in the estimation without any explicit control on the information leakage, which is a significant privacy concern. We propose a first differentially private estimator of the survival function and show that it can be easily extended to provide differentially private confidence intervals and test statistics without spending any extra privacy budget. We further provide extensions for differentially private estimation of the competing risk cumulative incidence function, Nelson-Aalen's estimator for the hazard function, etc. Using eleven real-life clinical datasets, we provide empirical evidence that our proposed method provides good utility while simultaneously providing strong privacy guarantees.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.