Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence Rates for Differentially Private Statistical Estimation (1206.6395v1)

Published 27 Jun 2012 in cs.LG, cs.CR, and stat.ML

Abstract: Differential privacy is a cryptographically-motivated definition of privacy which has gained significant attention over the past few years. Differentially private solutions enforce privacy by adding random noise to a function computed over the data, and the challenge in designing such algorithms is to control the added noise in order to optimize the privacy-accuracy-sample size tradeoff. This work studies differentially-private statistical estimation, and shows upper and lower bounds on the convergence rates of differentially private approximations to statistical estimators. Our results reveal a formal connection between differential privacy and the notion of Gross Error Sensitivity (GES) in robust statistics, by showing that the convergence rate of any differentially private approximation to an estimator that is accurate over a large class of distributions has to grow with the GES of the estimator. We then provide an upper bound on the convergence rate of a differentially private approximation to an estimator with bounded range and bounded GES. We show that the bounded range condition is necessary if we wish to ensure a strict form of differential privacy.

Citations (50)

Summary

We haven't generated a summary for this paper yet.