Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Privacy-Preserving Mechanisms for Parametric Survival Analysis with Weibull Distribution (1708.04517v2)

Published 2 Jul 2017 in cs.CR and cs.DB

Abstract: Survival analysis studies the statistical properties of the time until an event of interest occurs. It has been commonly used to study the effectiveness of medical treatments or the lifespan of a population. However, survival analysis can potentially leak confidential information of individuals in the dataset. The state-of-the-art techniques apply ad-hoc privacy-preserving mechanisms on publishing results to protect the privacy. These techniques usually publish sanitized and randomized answers which promise to protect the privacy of individuals in the dataset but without providing any formal mechanism on privacy protection. In this paper, we propose private mechanisms for parametric survival analysis with Weibull distribution. We prove that our proposed mechanisms achieve differential privacy, a robust and rigorous definition of privacy-preservation. Our mechanisms exploit the property of local sensitivity to carefully design a utility function which enables us to publish parameters of Weibull distribution with high precision. Our experimental studies show that our mechanisms can publish useful answers and outperform other differentially private techniques on real datasets.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.