Papers
Topics
Authors
Recent
Search
2000 character limit reached

Perturbed minimizing movements of families of functionals

Published 8 Oct 2019 in math.AP | (1910.03260v1)

Abstract: We consider the well-known minimizing-movement approach to the definition of a solution of gradient-flow type equations by means of an implicit Euler scheme depending on an energy and a dissipation term. We perturb the energy by considering a ($\Gamma$-converging) sequence and the dissipation by varying multiplicative terms. The scheme depends on two small parameters $\varepsilon$ and $\tau$, governing energy and time scales, respectively. We characterize the extreme cases when $\varepsilon/\tau$ and $\tau/\varepsilon$ converges to $0$ sufficiently fast, and exhibit a sufficient condition that guarantees that the limit is indeed independent of $\varepsilon$ and $\tau$. We give examples showing that this in general is not the case, and apply this approach to study some discrete approximations, the homogenization of wiggly energies and geometric crystalline flows obtained as limits of ferromagnetic energies.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.