Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
86 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
53 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Task-Adaptive Incremental Learning for Intelligent Edge Devices (1910.03122v1)

Published 7 Oct 2019 in cs.DC

Abstract: Convolutional Neural Networks (CNNs) are used for a wide range of image-related tasks such as image classification and object detection. However, a large pre-trained CNN model contains a lot of redundancy considering the task-specific edge applications. Also, the statically pre-trained model could not efficiently handle the dynamic data in the real-world application. The CNN training data and their labels are collected in an incremental manner. To tackle the above two challenges, we proposed TeAM a task-adaptive incremental learning framework for CNNs in intelligent edge devices. Given a pre-trained large model, TeAM can configure it into any specialized model for dedicated edge applications. The specialized model can be quickly fine-tuned with local data to achieve very high accuracy. Also, with our global aggregation and incremental learning scheme, the specialized CNN models can be collaboratively aggregated to an enhanced global model with new training data.

Citations (2)

Summary

We haven't generated a summary for this paper yet.