Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SNDCNN: Self-normalizing deep CNNs with scaled exponential linear units for speech recognition (1910.01992v3)

Published 4 Oct 2019 in cs.LG, cs.CL, cs.SD, eess.AS, and stat.ML

Abstract: Very deep CNNs achieve state-of-the-art results in both computer vision and speech recognition, but are difficult to train. The most popular way to train very deep CNNs is to use shortcut connections (SC) together with batch normalization (BN). Inspired by Self- Normalizing Neural Networks, we propose the self-normalizing deep CNN (SNDCNN) based acoustic model topology, by removing the SC/BN and replacing the typical RELU activations with scaled exponential linear unit (SELU) in ResNet-50. SELU activations make the network self-normalizing and remove the need for both shortcut connections and batch normalization. Compared to ResNet- 50, we can achieve the same or lower (up to 4.5% relative) word error rate (WER) while boosting both training and inference speed by 60%-80%. We also explore other model inference optimization schemes to further reduce latency for production use.

Citations (38)

Summary

We haven't generated a summary for this paper yet.