Apolarity, border rank and multigraded Hilbert scheme (1910.01944v2)
Abstract: We introduce an elementary method to study the border rank of polynomials and tensors, analogous to the apolarity lemma. This can be used to describe the border rank of all cases uniformly, including those very special ones that resisted a systematic approach. We also define a border rank version of the variety of sums of powers and analyse its usefulness in studying tensors and polynomials with large symmetries. In particular, it can be applied to provide lower bounds for the border rank of some very interesting tensors, such as the matrix multiplication tensor. We work in a general setting, where the base variety is not necessarily a Segre or Veronese variety, but an arbitrary smooth toric projective variety. A critical ingredient of our work is an irreducible component of a multigraded Hilbert scheme related to the toric variety in question.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.