Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fixed-parameter debordering of Waring rank (2401.07631v1)

Published 15 Jan 2024 in cs.CC and math.AG

Abstract: Border complexity measures are defined via limits (or topological closures), so that any function which can approximated arbitrarily closely by low complexity functions itself has low border complexity. Debordering is the task of proving an upper bound on some non-border complexity measure in terms of a border complexity measure, thus getting rid of limits. Debordering is at the heart of understanding the difference between Valiant's determinant vs permanent conjecture, and Mulmuley and Sohoni's variation which uses border determinantal complexity. The debordering of matrix multiplication tensors by Bini played a pivotal role in the development of efficient matrix multiplication algorithms. Consequently, debordering finds applications in both establishing computational complexity lower bounds and facilitating algorithm design. Currently, very few debordering results are known. In this work, we study the question of debordering the border Waring rank of polynomials. Waring and border Waring rank are very well studied measures in the context of invariant theory, algebraic geometry, and matrix multiplication algorithms. For the first time, we obtain a Waring rank upper bound that is exponential in the border Waring rank and only linear in the degree. All previous known results were exponential in the degree. For polynomials with constant border Waring rank, our results imply an upper bound on the Waring rank linear in degree, which previously was only known for polynomials with border Waring rank at most 5.

Citations (1)

Summary

We haven't generated a summary for this paper yet.