Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Doubly Robust Identification for Causal Panel Data Models (1909.09412v3)

Published 20 Sep 2019 in econ.EM, econ.GN, and q-fin.EC

Abstract: We study identification and estimation of causal effects in settings with panel data. Traditionally researchers follow model-based identification strategies relying on assumptions governing the relation between the potential outcomes and the observed and unobserved confounders. We focus on a different, complementary approach to identification where assumptions are made about the connection between the treatment assignment and the unobserved confounders. Such strategies are common in cross-section settings but rarely used with panel data. We introduce different sets of assumptions that follow the two paths to identification and develop a doubly robust approach. We propose estimation methods that build on these identification strategies.

Summary

We haven't generated a summary for this paper yet.