Papers
Topics
Authors
Recent
2000 character limit reached

Infusing Learned Priors into Model-Based Multispectral Imaging

Published 20 Sep 2019 in eess.IV and cs.CV | (1909.09313v1)

Abstract: We introduce a new algorithm for regularized reconstruction of multispectral (MS) images from noisy linear measurements. Unlike traditional approaches, the proposed algorithm regularizes the recovery problem by using a prior specified \emph{only} through a learned denoising function. More specifically, we propose a new accelerated gradient method (AGM) variant of regularization by denoising (RED) for model-based MS image reconstruction. The key ingredient of our approach is the three-dimensional (3D) deep neural net (DNN) denoiser that can fully leverage spationspectral correlations within MS images. Our results suggest the generalizability of our MS-RED algorithm, where a single trained DNN can be used to solve several different MS imaging problems.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.