Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RED-PSM: Regularization by Denoising of Factorized Low Rank Models for Dynamic Imaging (2304.03483v4)

Published 7 Apr 2023 in eess.IV, cs.CV, and cs.LG

Abstract: Dynamic imaging addresses the recovery of a time-varying 2D or 3D object at each time instant using its undersampled measurements. In particular, in the case of dynamic tomography, only a single projection at a single view angle may be available at a time, making the problem severely ill-posed. We propose an approach, RED-PSM, which combines for the first time two powerful techniques to address this challenging imaging problem. The first, are non-parametric factorized low rank models, also known as partially separable models (PSMs), which have been used to efficiently introduce a low-rank prior for the spatio-temporal object. The second is the recent Regularization by Denoising (RED), which provides a flexible framework to exploit the impressive performance of state-of-the-art image denoising algorithms, for various inverse problems. We propose a partially separable objective with RED and a computationally efficient and scalable optimization scheme with variable splitting and ADMM. Theoretical analysis proves the convergence of our objective to a value corresponding to a stationary point satisfying the first-order optimality conditions. Convergence is accelerated by a particular projection-domain-based initialization. We demonstrate the performance and computational improvements of our proposed RED-PSM with a learned image denoiser by comparing it to a recent deep-prior-based method known as TD-DIP. Although the main focus is on dynamic tomography, we also show performance advantages of RED-PSM in a cardiac dynamic MRI setting.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (136)
  1. E. Maire et al., “20 Hz X-ray tomography during an in situ tensile test,” International Journal of Fracture, 2016.
  2. I. Danad et al., “Static and dynamic assessment of myocardial perfusion by computed tomography,” European Heart Journal - Cardiovascular Imaging, vol. 17, no. 8, pp. 836–844, 03 2016.
  3. P. J. Keall et al., “Acquiring 4D thoracic CT scans using a multislice helical method,” Phys. Med. Biol., vol. 49, no. 10, p. 2053, 2004.
  4. A. Scanziani et al., “In situ characterization of immiscible three-phase flow at the pore scale for a water-wet carbonate rock,” Advances in Water Resources, vol. 121, pp. 446–455, 2018.
  5. J. O’Connor et al., “Dynamic contrast-enhanced imaging techniques: CT and MRI,” Brit. J. Radiol., vol. 84, pp. S112–S120, 2011.
  6. B. M. Patterson et al., “In situ X-ray synchrotron tomographic imaging during the compression of hyper-elastic polymeric materials,” Journal of Materials Science, vol. 51, no. 1, pp. 171–187, 2016.
  7. B. M. Patterson et al., “Synchrotron CT imaging of lattice structures with engineered defects,” Journal of Materials Science, vol. 55, no. 25, 2020.
  8. M. Salerno et al., “Recent advances in cardiovascular magnetic resonance: techniques and applications,” Circulation: Cardiovascular Imaging, vol. 10, no. 6, 2017.
  9. Z.-P. Liang, “Spatiotemporal imaging with partially separable functions,” in Proc. IEEE Int. Symp. Biomed. Imag.   IEEE, 2007, pp. 988–991.
  10. J. P. Haldar and Z.-P. Liang, “Spatiotemporal imaging with partially separable functions: A matrix recovery approach,” in Proc. IEEE Int. Symp. Biomed. Imag., April 2010, pp. 716–719.
  11. B. Zhao et al., “Low rank matrix recovery for real-time cardiac MRI,” in Proc. IEEE Int. Symp. Biomed. Imag.   IEEE, 2010, pp. 996–999.
  12. S. Goud, Y. Hu, and M. Jacob, “Real-time cardiac MRI using low-rank and sparsity penalties,” in Proc. IEEE Int. Symp. Biomed. Imag.   IEEE, 2010, pp. 988–991.
  13. Y. Romano et al., “The little engine that could: Regularization by denoising (RED),” SIAM J. Imaging Sci., vol. 10, no. 4, pp. 1804–1844, 2017.
  14. J. Yoo et al., “Time-dependent deep image prior for dynamic MRI,” IEEE Transactions on Medical Imaging, vol. 40, no. 12, pp. 3337–3348, 2021.
  15. S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg, “Plug-and-play priors for model based reconstruction,” in 2013 IEEE Global Conference on Signal and Information Processing, 2013, pp. 945–948.
  16. U. S. Kamilov et al., “Plug-and-play methods for integrating physical and learned models in computational imaging: Theory, algorithms, and applications,” IEEE Signal Processing Magazine, vol. 40, no. 1, pp. 85–97, 2023.
  17. X. Xu et al., “Provable convergence of plug-and-play priors with MMSE denoisers,” IEEE Signal Processing Letters, vol. 27, pp. 1280–1284, 2020.
  18. R. Cohen, M. Elad, and P. Milanfar, “Regularization by denoising via fixed-point projection (RED-PRO),” SIAM Journal on Imaging Sciences, vol. 14, no. 3, pp. 1374–1406, 2021.
  19. D. Xue et al., “On the convergence of non-convex phase retrieval with denoising priors,” IEEE Transactions on Signal Processing, vol. 70, pp. 4424–4439, 2022.
  20. E. T. Reehorst and P. Schniter, “Regularization by denoising: Clarifications and new interpretations,” IEEE Transactions on Computational Imaging, vol. 5, no. 1, pp. 52–67, 2018.
  21. X. Hu and T. Parrish, “Reduction of field of view for dynamic imaging,” Magnetic Resonance in Medicine, vol. 31, no. 6, pp. 691–694, 1994.
  22. M. E. Brummer et al., “Noquist: Reduced field-of-view imaging by direct Fourier inversion,” Magnetic Resonance in Medicine, vol. 51, no. 2, pp. 331–342, 2004.
  23. B. Madore, G. H. Glover, and N. J. Pelc, “Unaliasing by Fourier-encoding the overlaps using the temporal dimension (UNFOLD), applied to cardiac imaging and fMRI,” Magnetic Resonance in Medicine, vol. 42, no. 5, pp. 813–828, 1999.
  24. M. Lustig et al., “K-T SPARSE: High Frame Rate Dynamic MRI Exploiting Spatio-Temporal Sparsity,” in Proc. ISMRM, Seattle, 2006, p. 2420.
  25. U. Gamper, P. Boesiger, and S. Kozerke, “Compressed sensing in dynamic MRI,” Magnetic Resonance in Medicine, vol. 59, no. 2, pp. 365–373, 2008.
  26. H. Jung, J. C. Ye, and E. Y. Kim, “Improved k–t BLAST and k–t SENSE using FOCUSS,” Physics in Medicine & Biology, vol. 52, no. 11, p. 3201, 2007.
  27. H. Jung et al., “K-t FOCUSS: A general compressed sensing framework for high resolution dynamic MRI,” Magnetic Resonance in Medicine, vol. 61, no. 1, pp. 103–116, 2009.
  28. Q. Zhao, N. aggarwal, and Y. Bresler, “Dynamic Imaging of Time-Varying Objects,” in Proc. ISMRM 2001, Glasgow, Scotland, Apr. 2001, p. 1776.
  29. N. Aggarwal, Q. Zhao, and Y. Bresler, “Spatio-temporal modeling and minimum redundancy adaptive acquisition in dynamic MRI,” in Proc. IEEE Int. Symp. Biomed. Imag.   IEEE, 2002, pp. 737–740.
  30. N. Aggarwal and Y. Bresler, “Patient-adapted reconstruction and acquisition dynamic imaging method (PARADIGM) for MRI,” Inverse Problems, vol. 24, no. 4, pp. 0 450 151–04 501 529, 2008.
  31. B. Sharif et al., “Patient-adaptive reconstruction and acquisition in dynamic imaging with sensitivity encoding (PARADISE),” Magnetic Resonance in Medicine, vol. 64, no. 2, pp. 501–513, 2010.
  32. N. P. Willis and Y. Bresler, “Lattice-Theoretic Analysis of Time-Sequential Sampling of Spatio-Temporal Signals Part I,” IEEE Trans. Infor. Theory, vol. 43, no. 1, pp. 190–207, Jan. 1997.
  33. N. P. Willis and Y. Bresler, “Lattice-Theoretic Analysis of Time-Sequential Sampling of Spatio-Temporal Signals Part II: Large Space-Bandwidth-Product Asymptotics,” IEEE Trans. Infor. Theory, vol. 43, no. 1, pp. 208–220, Jan. 1997.
  34. Z.-P. Liang and P. Lauterbur, “An efficient method for dynamic magnetic resonance imaging,” IEEE Transactions on Medical Imaging, vol. 13, no. 4, pp. 677–686, Dec. 1994.
  35. Z.-P. Liang et al., “Dynamic imaging by model estimation,” International Journal of Imaging Systems and Technology, vol. 8, no. 6, pp. 551–557, 1997.
  36. J. Tsao, P. Boesiger, and K. P. Pruessmann, “K-t BLAST and k-t SENSE: Dynamic MRI with high frame rate exploiting spatiotemporal correlations,” Magnetic Resonance in Medicine, vol. 50, no. 5, pp. 1031–1042, 2003.
  37. H. Pedersen et al., “k-t PCA: temporally constrained k-t BLAST reconstruction using principal component analysis,” Magnetic Resonance in Medicine, vol. 62, no. 3, pp. 706–716, 2009.
  38. C. Brinegar et al., “Improving temporal resolution of pulmonary perfusion imaging in rats using the partially separable functions model,” Magnetic Resonance in Medicine, vol. 64, no. 4, pp. 1162–1170, 2010.
  39. J. P. Haldar and Z.-P. Liang, “Low-rank approximations for dynamic imaging,” in Proc. IEEE Int. Symp. Biomed. Imag.   IEEE, 2011, pp. 1052–1055.
  40. B. Zhao et al., “Further development of image reconstruction from highly undersampled (k, t)-space data with joint partial separability and sparsity constraints,” in Proc. IEEE Int. Symp. Biomed. Imag.   IEEE, 2011, pp. 1593–1596.
  41. B. Zhao et al., “Image reconstruction from highly undersampled (k, t)-space data with joint partial separability and sparsity constraints,” IEEE Transactions on Medical Imaging, vol. 31, no. 9, pp. 1809–1820, 2012.
  42. S. G. Lingala and M. Jacob, “Blind compressive sensing dynamic MRI,” IEEE Transactions on Medical Imaging, vol. 32, no. 6, pp. 1132–1145, 2013.
  43. Y. Djebra et al., “Manifold learning via linear tangent space alignment (LTSA) for accelerated dynamic MRI with sparse sampling,” IEEE Transactions on Medical Imaging, 2022.
  44. S. G. Lingala et al., “Accelerated dynamic MRI exploiting sparsity and low-rank structure: kt SLR,” IEEE Transactions on Medical Imaging, vol. 30, no. 5, pp. 1042–1054, 2011.
  45. A. Majumdar and R. K. Ward, “An algorithm for sparse MRI reconstruction by Schatten p-norm minimization,” Magnetic Resonance Imaging, vol. 29, no. 3, pp. 408–417, Apr. 2011.
  46. A. Majumdar, R. K. Ward, and T. Aboulnasr, “Non-convex algorithm for sparse and low-rank recovery: Application to dynamic MRI reconstruction,” Magnetic Resonance Imaging, vol. 31, no. 3, pp. 448–455, 2013.
  47. A. Majumdar and R. Ward, “Learning space-time dictionaries for blind compressed sensing dynamic MRI reconstruction,” Proceedings IEEE International Conference on Image Processing (ICIP), pp. 4550–4554, 2015.
  48. J. Trzasko and A. Manduca, “Local versus Global Low-Rank Promotion in Dynamic MRI Series Reconstruction,” in Proc. Int. Soc. Mag. Reson. Med., vol. 24, 2011, p. 4371.
  49. J. D. Trzasko, “Exploiting local low-rank structure in higher-dimensional MRI applications,” in Wavelets and Sparsity XV, vol. 8858.   SPIE, Sep. 2013, pp. 551–558.
  50. S. G. Lingala, E. DiBella, and M. Jacob, “Deformation corrected compressed sensing (DC-CS): a novel framework for accelerated dynamic MRI,” IEEE Transactions on Medical Imaging, vol. 34, no. 1, pp. 72–85, 2014.
  51. X. Chen et al., “Motion-compensated compressed sensing for dynamic contrast-enhanced mri using regional spatiotemporal sparsity and region tracking: Block low-rank sparsity with motion-guidance (BLOSM),” Magnetic Resonance in Medicine, vol. 72, no. 4, pp. 1028–1038, 2014.
  52. H. Yoon et al., “Motion adaptive patch-based low-rank approach for compressed sensing cardiac cine MRI,” IEEE Transactions on Medical Imaging, vol. 33, no. 11, pp. 2069–2085, 2014.
  53. A. Tolouee, J. Alirezaie, and P. Babyn, “Nonrigid motion compensation in compressed sensing reconstruction of cardiac cine MRI,” Magnetic Resonance Imaging, vol. 46, pp. 114–120, 2018.
  54. B. Trémoulhéac et al., “Dynamic MR image reconstruction–separation from undersampled (k,t)𝑘𝑡(k,t)( italic_k , italic_t )-space via low-rank plus sparse prior,” IEEE Transactions on Medical Imaging, vol. 33, no. 8, pp. 1689–1701, 2014.
  55. M. Chiew et al., “k-t FASTER: acceleration of functional MRI data acquisition using low rank constraints,” Magnetic Resonance in Medicine, vol. 74, no. 2, pp. 353–364, 2015.
  56. R. Otazo, E. Candes, and D. K. Sodickson, “Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components,” Magnetic Resonance in Medicine, vol. 73, no. 3, pp. 1125–1136, 2015.
  57. S. Ravishankar et al., “Low-rank and adaptive sparse signal (LASSI) models for highly accelerated dynamic imaging,” IEEE Transactions on Medical Imaging, vol. 36, no. 5, pp. 1116–1128, 2017.
  58. S. Babu, S. G. Lingala, and N. Vaswani, “Fast low rank column-wise compressive sensing for accelerated dynamic MRI,” IEEE Transactions on Computational Imaging, 2023.
  59. J. Schlemper et al., “A Deep Cascade of Convolutional Neural Networks for Dynamic MR Image Reconstruction,” IEEE Transactions on Medical Imaging, vol. 37, no. 2, pp. 491–503, Feb. 2018.
  60. C. Qin et al., “Convolutional Recurrent Neural Networks for Dynamic MR Image Reconstruction,” IEEE Transactions on Medical Imaging, vol. 38, no. 1, pp. 280–290, Jan. 2019.
  61. S. Biswas, H. K. Aggarwal, and M. Jacob, “Dynamic MRI using model-based deep learning and SToRM priors: MoDL-SToRM,” Magnetic Resonance in Medicine, vol. 82, no. 1, pp. 485–494, 2019.
  62. A. Hauptmann et al., “Real-time cardiovascular MR with spatio-temporal artifact suppression using deep learning–proof of concept in congenital heart disease,” Magn. Reson. Med., vol. 81, no. 2, pp. 1143–1156, 2019.
  63. T. Küstner et al., “CINENet: Deep learning-based 3D cardiac CINE MRI reconstruction with multi-coil complex-valued 4D spatio-temporal convolutions,” Scientific Reports, vol. 10, no. 1, p. 13710, Aug. 2020.
  64. Q. Huang et al., “Dynamic MRI reconstruction with end-to-end motion-guided network,” Medical Image Analysis, vol. 68, p. 101901, Feb. 2021.
  65. Z. Ke et al., “Deep Manifold Learning for Dynamic MR Imaging,” IEEE Transactions on Computational Imaging, vol. 7, pp. 1314–1327, 2021.
  66. Z. Ke et al., “Learned Low-Rank Priors in Dynamic MR Imaging,” IEEE Transactions on Medical Imaging, vol. 40, no. 12, pp. 3698–3710, Dec. 2021.
  67. C. M. Sandino et al., “Accelerating cardiac cine MRI using a deep learning-based ESPIRiT reconstruction,” Magnetic Resonance in Medicine, vol. 85, no. 1, pp. 152–167, 2021.
  68. V. Ghodrati et al., “Temporally aware volumetric generative adversarial network-based MR image reconstruction with simultaneous respiratory motion compensation: Initial feasibility in 3D dynamic cine cardiac MRI,” Magnetic Resonance in Medicine, vol. 86, no. 5, pp. 2666–2683, 2021.
  69. T. Küstner et al., “LAPNet: Non-Rigid Registration Derived in k-Space for Magnetic Resonance Imaging,” IEEE Transactions on Medical Imaging, vol. 40, no. 12, pp. 3686–3697, Dec. 2021.
  70. H. Qi et al., “End-to-end deep learning nonrigid motion-corrected reconstruction for highly accelerated free-breathing coronary MRA,” Magnetic Resonance in Medicine, vol. 86, no. 4, pp. 1983–1996, 2021.
  71. K. Hammernik et al., “Motion-Guided Physics-Based Learning for Cardiac MRI Reconstruction,” Proc. IEEE Asilomar Conference on Signals, Systems, and Computers, pp. 900–907, Oct. 2021.
  72. S. Wang et al., “DIMENSION: Dynamic MR imaging with both k-space and spatial prior knowledge obtained via multi-supervised network training,” NMR in Biomedicine, vol. 35, no. 4, p. e4131, 2022.
  73. Q. Zou et al., “Dynamic imaging using a deep generative storm (Gen-SToRM) model,” IEEE Transactions on Medical Imaging, vol. 40, no. 11, pp. 3102–3112, 2021.
  74. A. H. Ahmed et al., “Dynamic imaging using deep bi-linear unsupervised representation (DEBLUR),” IEEE Transactions on Medical Imaging, vol. 41, no. 10, pp. 2693–2703, 2022.
  75. N. P. Willis and Y. Bresler, “Tomographic imaging of time-varying distributions,” in Biomedical Image Processing, vol. 1245.   SPIE, 1990, pp. 111–123.
  76. P. Willis and Y. Bresler, “Optimal scan for time-varying tomography. I. Theoretical analysis and fundamental limitations,” IEEE Transactions on Image Processing, vol. 4, no. 5, pp. 642–653, 1995.
  77. N. Willis and Y. Bresler, “Optimal scan for time-varying tomography. II. Efficient design and experimental validation,” IEEE Transactions on Image Processing, vol. 4, no. 5, pp. 654–666, 1995.
  78. C. Jailin and S. Roux, “Dynamic tomographic reconstruction of deforming volumes,” Materials, vol. 11, no. 8, 2018.
  79. G. Zang et al., “Space-time tomography for continuously deforming objects,” ACM Trans. Graph., vol. 37, no. 4, pp. 100:1–100:14, Jul. 2018.
  80. C. Jailin et al., “Projection-based dynamic tomography,” Phys. Med. Biol., vol. 66, no. 21, p. 215018, 2021.
  81. S. Capostagno et al., “Deformable motion compensation for interventional cone-beam CT,” Phys. Med. Biol., vol. 66, no. 5, p. 055010, Feb. 2021.
  82. M. Burger et al., “A variational reconstruction method for undersampled dynamic x-ray tomography based on physical motion models,” Inverse Problems, vol. 33, no. 12, p. 124008, 2017.
  83. B. N. Hahn et al., “Using the Navier-Cauchy equation for motion estimation in dynamic imaging,” Inverse Problems and Imaging, vol. 16, no. 5, p. 1179, 2022.
  84. L. Brombal et al., “Motion artifacts assessment and correction using optical tracking in synchrotron radiation breast CT,” Medical Physics, vol. 48, no. 9, pp. 5343–5355, 2021.
  85. A. K. George et al., “Time-resolved cardiac CT reconstruction using the ensemble Kalman Filter,” in Proc. IEEE Int. Symp. Biomed. Imag., May 2008, pp. 1489–1492.
  86. M. D. Butala et al., “Tomographic Imaging of Dynamic Objects With the Ensemble Kalman Filter,” IEEE Transactions on Image Processing, vol. 18, no. 7, pp. 1573–1587, Jul. 2009.
  87. J. Hakkarainen et al., “Undersampled Dynamic X-Ray Tomography With Dimension Reduction Kalman Filter,” IEEE Transactions on Computational Imaging, vol. 5, no. 3, pp. 492–501, Sep. 2019.
  88. X. Cao et al., “Undersampled dynamic tomography with separated spatial and temporal regularization,” 7th International Conference on Image Formation in X-Ray Computed Tomography, vol. 12304, pp. 288–295, Oct. 2022.
  89. K. A. Mohan et al., “TIMBIR: A method for time-space reconstruction from interlaced views,” IEEE Transactions on Computational Imaging, vol. 1, no. 2, pp. 96–111, 2015.
  90. F. Lucka et al., “Enhancing Compressed Sensing 4D Photoacoustic Tomography by Simultaneous Motion Estimation,” SIAM J. Imaging Sci., vol. 11, no. 4, pp. 2224–2253, Jan. 2018.
  91. T. A. Bubba et al., “Sparse dynamic tomography: A shearlet-based approach for iodine perfusion in plant stems,” Inverse Problems, vol. 36, no. 9, p. 094002, Sep. 2020.
  92. H. Gao et al., “Robust principal component analysis-based four-dimensional computed tomography,” Physics in Medicine & Biology, vol. 56, no. 11, p. 3181, 2011.
  93. B. Iskender et al., “Dynamic tomography reconstruction by projection-domain separable modeling,” IEEE 14th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP), 2022.
  94. B. Iskender et al., “Dynamic tomography reconstruction by projection-domain separable modeling,” arXiv:2204.09935, 2022.
  95. B. Iskender et al., “Factorized projection-domain spatio-temporal regularization for dynamic tomography,” IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023.
  96. S. Zhi et al., “Artifacts reduction method for phase-resolved Cone-Beam CT (CBCT) images via a prior-guided CNN,” Medical Imaging 2019: Physics of Medical Imaging, vol. 10948, pp. 562–567, Mar. 2019.
  97. X. Huang et al., “U-net-based deformation vector field estimation for motion-compensated 4D-CBCT reconstruction,” Medical Physics, vol. 47, no. 7, pp. 3000–3012, 2020.
  98. F. Madesta et al., “Self-contained deep learning-based boosting of 4D cone-beam CT reconstruction,” Medical Physics, vol. 47, no. 11, pp. 5619–5631, 2020.
  99. Z. Zhang et al., “Deep learning-based motion compensation for four-dimensional cone-beam computed tomography (4D-CBCT) reconstruction,” Medical Physics, vol. 50, no. 2, pp. 808–820, 2023.
  100. S. Majee et al., “Multi-slice fusion for sparse-view and limited-angle 4D CT reconstruction,” IEEE Transactions on Computational Imaging, vol. 7, pp. 448–462, 2021.
  101. G. T. Buzzard et al., “Plug-and-play unplugged: Optimization-free reconstruction using consensus equilibrium,” SIAM Journal on Imaging Sciences, vol. 11, no. 3, pp. 2001–2020, 2018.
  102. L. Lozenski, M. A. Anastasio, and U. Villa, “A memory-efficient self-supervised dynamic image reconstruction method using neural fields,” IEEE Transactions on Computational Imaging, vol. 8, pp. 879–892, 2022.
  103. X. Shi et al., “Convolutional LSTM network: A machine learning approach for precipitation nowcasting,” Advances in neural information processing systems, vol. 28, 2015.
  104. L. Wang et al., “Spatial-temporal transformer for video snapshot compressive imaging,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.
  105. N. Ginio et al., “Efficient machine learning method for spatio-temporal water surface waves reconstruction from polarimetric images,” Measurement Science and Technology, vol. 34, no. 5, p. 055801, 2023.
  106. B. Iskender, M. L. Klasky, and Y. Bresler, “RED-PSM: Regularization by denoising of partially separable models for dynamic imaging,” Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10 561–10 570, 2023.
  107. S. Ma et al., “Dynamic MRI reconstruction exploiting partial separability and t-SVD,” in Proc. 7th Int. Conf. on Bioinf. and Comput. Bio. (ICBCB).   IEEE, 2019, pp. 179–184.
  108. S. Ma et al., “Dynamic MRI exploiting partial separability and shift invariant discrete wavelet transform,” 6th International Conference on Image, Vision and Computing (ICIVC), pp. 242–246, 2021.
  109. Y. Sun et al., “Block coordinate regularization by denoising,” Advances in Neural Information Processing Systems, vol. 32, 2019.
  110. C. Metzler et al., “prDeep: robust phase retrieval with a flexible deep network,” in Proc. Int. Conf. on Mach. Learn. (ICML).   PMLR, 2018, pp. 3501–3510.
  111. G. Mataev, P. Milanfar, and M. Elad, “DeepRED: Deep image prior powered by RED,” Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 2019.
  112. S. Boyd et al., “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Foundations and Trends in Machine Learning, 2011.
  113. D. Gabay and B. Mercier, “A dual algorithm for the solution of nonlinear variational problems via finite element approximation,” Computers & Mathematics with Applications, vol. 2, no. 1, pp. 17–40, 1976.
  114. J. Eckstein and D. P. Bertsekas, “On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators,” Mathematical Programming, vol. 55, no. 1, pp. 293–318, 1992.
  115. K. Zhang et al., “Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising,” IEEE Transactions on Image Processing, vol. 26, no. 7, pp. 3142–3155, 2017.
  116. D. Hajinezhad and Q. Shi, “Alternating direction method of multipliers for a class of nonconvex bilinear optimization: convergence analysis and applications,” J. Glob. Optim., vol. 70, pp. 261–288, 2018.
  117. Y. Wang et al., “Global convergence of ADMM in nonconvex nonsmooth optimization,” Journal of Scientific Computing, vol. 78, pp. 29–63, 2019.
  118. R. Cohen et al., “It has potential: Gradient-driven denoisers for convergent solutions to inverse problems,” Advances in Neural Information Processing Systems, vol. 34, pp. 18 152–18 164, 2021.
  119. S. Hurault, A. Leclaire, and N. Papadakis, “Gradient step denoiser for convergent Plug-and-Play,” International Conference on Learning Representations (ICLR), 2022.
  120. R. Fermanian, M. Le Pendu, and C. Guillemot, “PnP-ReG: Learned regularizing gradient for plug-and-play gradient descent,” SIAM Journal on Imaging Sciences, vol. 16, no. 2, pp. 585–613, 2023.
  121. A. Berk et al., “Deep proximal gradient method for learned convex regularizers,” IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5, 2023.
  122. J. R. Chand and M. Jacob, “Multi-scale energy (MuSE) plug and play framework for inverse problems,” arXiv:2305.04775, 2023.
  123. M. Udell et al., “Generalized low rank models,” Foundations and Trends in Machine Learning, vol. 9, no. 1, pp. 1–118, 2016.
  124. J. D. Rennie and N. Srebro, “Fast maximum margin matrix factorization for collaborative prediction,” Proceedings of the 22nd International Conference on Machine Learning (ICML), pp. 713–719, 2005.
  125. B. Recht, M. Fazel, and P. A. Parrilo, “Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization,” SIAM review, vol. 52, no. 3, pp. 471–501, 2010.
  126. H. Der Sarkissian et al., “A cone-beam X-ray computed tomography data collection designed for machine learning,” Scientific data, vol. 6, no. 1, p. 215, 2019.
  127. “Piecewise Affine Transformation,” https://scikit-image.org/docs/dev/auto_examples/transform/plot_piecewise_affine.html.
  128. B. M. Patterson, “Personal communication,” 2022.
  129. F. Reda et al., “FILM: Frame interpolation for large motion,” arXiv preprint arXiv:2202.04901, 2022.
  130. B. Iskender, M. L. Klasky, and Y. Bresler, “Dynamic tomography reconstruction via low-rank modeling with a red spatial prior,” IEEE 9th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pp. 506–510, 2023.
  131. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
  132. O. Bernard et al., “Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved?” IEEE Transactions on Medical Imaging, 2018.
  133. S. Kulkarni, J. A. Rumberger, and S. Jha, “Electron beam CT: A historical review,” American Journal of Roentgenology, vol. 216, no. 5, pp. 1222–1228, 2021.
  134. D. Spronk et al., “Evaluation of carbon nanotube x-ray source array for stationary head computed tomography,” Med. Phys., vol. 48, no. 3, pp. 1089–1099, 2021.
  135. S. Xu et al., “Volumetric computed tomography with carbon nanotube x-ray source array for improved image quality and accuracy,” Commun Eng, vol. 2, no. 1, pp. 1–9, Oct. 2023.
  136. Z. Wang et al., “Image quality assessment: from error visibility to structural similarity,” IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.
Citations (2)

Summary

We haven't generated a summary for this paper yet.