Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 15 tok/s
GPT-5 High 16 tok/s Pro
GPT-4o 105 tok/s
GPT OSS 120B 471 tok/s Pro
Kimi K2 202 tok/s Pro
2000 character limit reached

Towards Explainable Neural-Symbolic Visual Reasoning (1909.09065v2)

Published 19 Sep 2019 in cs.LG and cs.AI

Abstract: Many high-performance models suffer from a lack of interpretability. There has been an increasing influx of work on explainable artificial intelligence (XAI) in order to disentangle what is meant and expected by XAI. Nevertheless, there is no general consensus on how to produce and judge explanations. In this paper, we discuss why techniques integrating connectionist and symbolic paradigms are the most efficient solutions to produce explanations for non-technical users and we propose a reasoning model, based on definitions by Doran et al. 2017 to explain a neural network's decision. We use this explanation in order to correct bias in the network's decision rationale. We accompany this model with an example of its potential use, based on the image captioning method in Burns et al. 2018.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.