Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 131 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Human-In-The-Loop Learning of Qualitative Preference Models (1909.09064v1)

Published 19 Sep 2019 in cs.AI and cs.HC

Abstract: In this work, we present a novel human-in-the-loop framework to help the human user understand the decision making process that involves choosing preferred options. We focus on qualitative preference models over alternatives from combinatorial domains. This framework is interactive: the user provides her behavioral data to the framework, and the framework explains the learned model to the user. It is iterative: the framework collects feedback on the learned model from the user and tries to improve it accordingly till the user terminates the iteration. In order to communicate the learned preference model to the user, we develop visualization of intuitive and explainable graphic models, such as lexicographic preference trees and forests, and conditional preference networks. To this end, we discuss key aspects of our framework for lexicographic preference models.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.