Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decomposition Strategies for Constructive Preference Elicitation (1711.08247v2)

Published 22 Nov 2017 in stat.ML and cs.LG

Abstract: We tackle the problem of constructive preference elicitation, that is the problem of learning user preferences over very large decision problems, involving a combinatorial space of possible outcomes. In this setting, the suggested configuration is synthesized on-the-fly by solving a constrained optimization problem, while the preferences are learned itera tively by interacting with the user. Previous work has shown that Coactive Learning is a suitable method for learning user preferences in constructive scenarios. In Coactive Learning the user provides feedback to the algorithm in the form of an improvement to a suggested configuration. When the problem involves many decision variables and constraints, this type of interaction poses a significant cognitive burden on the user. We propose a decomposition technique for large preference-based decision problems relying exclusively on inference and feedback over partial configurations. This has the clear advantage of drastically reducing the user cognitive load. Additionally, part-wise inference can be (up to exponentially) less computationally demanding than inference over full configurations. We discuss the theoretical implications of working with parts and present promising empirical results on one synthetic and two realistic constructive problems.

Citations (5)

Summary

We haven't generated a summary for this paper yet.