Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Knowledge Transfer Framework for Differentially Private Sparse Learning

Published 13 Sep 2019 in stat.ML, cs.CR, and cs.LG | (1909.06322v1)

Abstract: We study the problem of estimating high dimensional models with underlying sparse structures while preserving the privacy of each training example. We develop a differentially private high-dimensional sparse learning framework using the idea of knowledge transfer. More specifically, we propose to distill the knowledge from a "teacher" estimator trained on a private dataset, by creating a new dataset from auxiliary features, and then train a differentially private "student" estimator using this new dataset. In addition, we establish the linear convergence rate as well as the utility guarantee for our proposed method. For sparse linear regression and sparse logistic regression, our method achieves improved utility guarantees compared with the best known results (Kifer et al., 2012; Wang and Gu, 2019). We further demonstrate the superiority of our framework through both synthetic and real-world data experiments.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.