Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DeepBbox: Accelerating Precise Ground Truth Generation for Autonomous Driving Datasets (1909.05620v1)

Published 29 Aug 2019 in cs.CV, cs.AI, and eess.IV

Abstract: Autonomous driving requires various computer vision algorithms, such as object detection and tracking.Precisely-labeled datasets (i.e., objects are fully contained in bounding boxes with only a few extra pixels) are preferred for training such algorithms, so that the algorithms can detect exact locations of the objects. However, it is very time-consuming and hence expensive to generate precise labels for image sequences at scale. In this paper, we propose DeepBbox, an algorithm that corrects loose object labels into right bounding boxes to reduce human annotation efforts. We use Cityscapes dataset to show annotation efficiency and accuracy improvement using DeepBbox. Experimental results show that, with DeepBbox,we can increase the number of object edges that are labeled automatically (within 1\% error) by 50% to reduce manual annotation time.

Citations (1)

Summary

We haven't generated a summary for this paper yet.