Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automated Spectral Kernel Learning (1909.04894v2)

Published 11 Sep 2019 in cs.LG and stat.ML

Abstract: The generalization performance of kernel methods is largely determined by the kernel, but common kernels are stationary thus input-independent and output-independent, that limits their applications on complicated tasks. In this paper, we propose a powerful and efficient spectral kernel learning framework and learned kernels are dependent on both inputs and outputs, by using non-stationary spectral kernels and flexibly learning the spectral measure from the data. Further, we derive a data-dependent generalization error bound based on Rademacher complexity, which estimates the generalization ability of the learning framework and suggests two regularization terms to improve performance. Extensive experimental results validate the effectiveness of the proposed algorithm and confirm our theoretical results.

Citations (14)

Summary

We haven't generated a summary for this paper yet.